

#### REPORT NUMBER: 102816357MID-001 ORIGINAL ISSUE DATE: November 30, 2016 REVISED DATE: N/A

**EVALUATION CENTER** 

Intertek Verification Center 8431 Murphy Dr Middleton, WI 53562

RENDERED TO Michelle Wang Michelle.wang@terasun.cn Zhejiang Terasun Air Duct Co., Ltd. (Maren) Chongren Industrial Clustering Area, Shengzhou City, Zhejiang, China

PRODUCT EVALUATED: Terasun Magnesium Board.

EVALUATION PROPERTY: ULC S135-04 standard test method for the determination of combustibility parameters the determination of combustibility parameters of building materials using an oxygen consumption calorimeter (cone calorimeter)

Report for compliance with the applicable requirements in accordance to the National Building Code of Canada for materials used in buildings that are required to be noncombustible.

"This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program."

**TEST REPORT** 



November 30, 2016 Page 2 of 16

# **1** Table of Contents

| 1 | Table of Contents                    | 2  |
|---|--------------------------------------|----|
| 2 | Introduction                         | 3  |
| 3 | Test Samples                         | 3  |
|   | 3.1. SAMPLE SELECTION                | 3  |
|   | 3.2. SAMPLE AND ASSEMBLY DESCRIPTION | 3  |
| 4 | Testing and Evaluation Methods       | 3  |
|   | 4.1. ULC S135-04                     | 3  |
|   | 4.2. Deviation from Standard Method  | 4  |
| 5 | Testing and Evaluation Results       | 5  |
|   | 5.1. RESULTS AND OBSERVATIONS        | 5  |
| 6 | Conclusion                           | 16 |



### 2 Introduction

Intertek has conducted testing for Zhejiang Terasun Air Duct Co., Ltd., onTerasun Magnesium Board to evaluate heat and smoke release rates. Testing was conducted following the standard methods of ULC S135-04 Standard Test Method for the Determination of Combustibility Parameters of Building Materials Using an Oxygen Consumption Calorimeter (Cone Calorimeter) in accordance with the National Building Code of Canada for materials used in buildings that are required to be noncombustible. The evaluation began November 29, 2016 and was completed November 29, 2016.

## 3 Test Samples

### 3.1. SAMPLE SELECTION

Samples were selected by an Intertek auditor. Samples were received at the Intertek Middleton Evaluation Center on November 15, 2016 in good condition.

### 3.2. SAMPLE AND ASSEMBLY DESCRIPTION

Sampe name: Terasun Magnesium Board.

Sample description: Model: 12mm thickness. Samples were cut to 100 +/- 1 mm by 100 +/-1 mm dimensions by the client.

Specimens were conditioned to moisture equilibrium (constant mass) at an ambient temperature of  $23 \pm 3^{\circ}$ C and a relative humidity of  $50 \pm 5\%$ .

## 4 **Testing and Evaluation Methods**

### 4.1. ULC S135-04

The testing was performed in accordance with the ULC S135-04 standard. Specimens in the test are burned in ambient air conditions, while being subjected to a predetermined external heat flux. Testing was done at 50 kW/m<sup>2</sup> with spark ignition.

Collect data for at least 15 minutes.

The total *heat release* per unit area shall be compared for the three specimens. If any of these readings differ by more than 10% from the average of the three readings, then a further set of three specimens shall be tested. In such cases, report the averages for peak heat release rate per unit area, total heat release per unit area, and total smoke extinction area using the set of six readings.



### National Building Code of Canada:

Materials used in buildings that are required to be of noncombustible combustible that have been tested in conformance with ULC-S135, "Test for the Determination of Combustibility Parameters of Building Materials Using an Oxygen Consumption Calorimeter (Cone Calorimeter)," at a heat flux of 50 kW/m<sup>2</sup> where:

- The materials' total heat release is not more than 3 MJ/m<sup>2</sup>,
- the materials' average total smoke extinction area is not more than 1.0 m<sup>2</sup>, and
- the test duration is extended beyond the time stipulated in the referenced standard until it is clear that there is no further release of heat or smoke.

#### 4.2. Deviation from Standard Method

There were no deviations from the standard.



# 5 Testing and Evaluation Results

### 5.1. RESULTS AND OBSERVATIONS

| Sample description<br>Material name/ID                                                                                                                                                                             | 102816357MID-001 Terasun Mg Board<br>102816357MID-001 Terasun Mg Board                                |                                                                  |                                                                                                                    |                                                                                                 |                                                                                   |                                                                  |                                                                                                                                |                                                                |                                                                         |                                                                                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| Specimen informati                                                                                                                                                                                                 | on                                                                                                    |                                                                  |                                                                                                                    |                                                                                                 |                                                                                   |                                                                  |                                                                                                                                |                                                                |                                                                         |                                                                                  |  |
| E<br>Thickness<br>Initial mass<br>Surface area<br>Heat flux<br>Separation<br>Orientation                                                                                                                           | 13.1 MJ/kg<br>12 mm<br>125.6 g<br>88.4 cm <sup>2</sup><br>50 kW/m <sup>2</sup><br>25 mm<br>Horizontal | S<br>N<br>E<br>G<br>M<br>S                                       | pecimen ni<br>lominal duo<br>idge frame<br>Grid used?<br>1anufacture<br>ponsor                                     | umber<br>ct flow rate<br>used?<br>er                                                            | 1<br>24 l/s<br>Yes<br>No                                                          |                                                                  | Condition<br>Temperat<br>RH                                                                                                    | ed?<br>ure                                                     | Yes<br>23°C<br>50%                                                      |                                                                                  |  |
| Test<br>Standard used<br>Date of test<br>Time of test<br>Date of report                                                                                                                                            | ULC S135<br>29/11/2016<br>07:43<br>29/11/2016                                                         | A<br>A<br>R                                                      | Pre-test co<br>Imbient ten<br>Imbient pre<br>Relative hur                                                          | onditions<br>nperature<br>essure<br>nidity                                                      | 18.9°C<br>96.811<br>35%                                                           | C<br>1 kPa                                                       | Test time<br>Time to ig<br>Time to fl<br>End of tes<br>End of tes<br>(for calcul                                               | es<br>Inition<br>ameout<br>at criteric<br>at time              | 0 s<br>s<br>on Use<br>900                                               | r entered<br>s                                                                   |  |
| Apparatus specifica                                                                                                                                                                                                | tions                                                                                                 | I                                                                | nitial con                                                                                                         | ditions                                                                                         |                                                                                   |                                                                  |                                                                                                                                |                                                                |                                                                         |                                                                                  |  |
| C-factor<br>Duct diameter<br>O2 delay time<br>CO2 delay time<br>CO delay time<br>OD corr. factor                                                                                                                   | 0.04298<br>0.114 m<br>17 s<br>17 s<br>17 s<br>1.0055                                                  | B<br>B<br>M                                                      | Baseline ambient oxygen20.786%Baseline oxygen20.952%Baseline carbon dioxide0.0759%Mass at sustained flaming125.6 g |                                                                                                 |                                                                                   |                                                                  | Heat Release Results     THR (0-300)   0.88 MJ/m²     THR (0-600)   2.40 MJ/m²     THR (0-1200)   -     Fuel load   0.35 MJ/kg |                                                                |                                                                         |                                                                                  |  |
| Test results (betwee                                                                                                                                                                                               | en 0 and 90                                                                                           | 0 s)                                                             |                                                                                                                    |                                                                                                 |                                                                                   |                                                                  |                                                                                                                                |                                                                |                                                                         |                                                                                  |  |
| Total heat release 5.0 MJ/m²   Total oxygen consumed 3.7 g   Mass lost 31.5 g   Average specific MLR 4.33 g/(s <sup>·m²</sup> )   Total smoke release 75.0 m²/m²   Total smoke production 0.7 m²   MAHRE 5.5 kW/m² |                                                                                                       |                                                                  | He<br>Eff<br>Ma<br>Sp<br>Ca<br>Ca                                                                                  | eat release r<br>fective heat<br>ass loss rate<br>ecific extinc<br>irbon mono»<br>irbon dioxide | ate (kW/m<br>of comb. (<br>(g/s)<br>tion area (i<br>kide yield (l<br>e yield (kg/ | <sup>2</sup> )<br>MJ/kg)<br>m²/kg)<br>kg/kg)<br>'kg)             | Mean<br>5.45<br>1.38<br>0.035<br>18.58<br>0.0088<br>0.16                                                                       | Peak<br>13.15<br>77.51<br>0.246<br>3237.91<br>7.7142<br>120.09 | <b>at ti</b><br>725<br>184<br>109<br>14<br>900<br>309                   | me (s)                                                                           |  |
| Test averages                                                                                                                                                                                                      |                                                                                                       |                                                                  |                                                                                                                    |                                                                                                 |                                                                                   |                                                                  |                                                                                                                                | 1                                                              |                                                                         |                                                                                  |  |
| from ignition to igni<br>Heat release rate (kW/<br>Effective heat of comb<br>Mass loss rate (g/s)<br>Specific extinction area<br>Carbon monoxide yield<br>Carbon dioxide yield (k                                  | i <b>tion plus</b><br>'m²)<br>. (MJ/kg)<br>a (m²/kg)<br>l (kg/kg)<br>kg/kg)                           | <b>1 min</b><br>0.70<br>0.20<br>0.031<br>15.70<br>0.0001<br>0.08 | 2 min<br>0.74<br>0.20<br>0.032<br>18.36<br>0.0015<br>0.09                                                          | <b>3 min</b><br>1.58<br>0.37<br>0.038<br>15.41<br>0.0025<br>0.09                                | <b>4 min</b><br>2.15<br>0.48<br>0.040<br>13.95<br>0.0031<br>0.10                  | <b>5 min</b><br>2.73<br>0.57<br>0.043<br>11.79<br>0.0034<br>0.11 | 6 min<br>3.00<br>0.62<br>0.043<br>11.11<br>0.0038<br>0.11                                                                      | 0<br>9<br>5.<br>1.<br>0.<br>18<br>0.                           | <b>s -</b><br><b>05 s</b><br>.47<br>.38<br>.035<br>8.54<br>.0088<br>.17 | <b>0</b> s -<br><b>905</b> s<br>5.47<br>1.38<br>0.035<br>18.54<br>0.0088<br>0.17 |  |
| Smoke results<br>Total smoke release: r<br>Total smoke release: f<br>Total smoke release: v                                                                                                                        | s - 0 s)<br>00 s)<br>)                                                                                | 0.0 m²/m²<br>75.0 m²/m<br>75.0 m²/m                              | 1 <sup>2</sup><br>1 <sup>2</sup>                                                                                   |                                                                                                 |                                                                                   |                                                                  |                                                                                                                                |                                                                |                                                                         |                                                                                  |  |



102816357MID-001 Terasun Mg Board

Sample description

| Material name/ID 102816357MID-001 Terasun Mg Board                                                                                                                  |                                                                                                                                                           |                                                                                                          |                                                                                                  |                                                                                       |                                                                            |                                                                                                      |                                                                                                  |                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Specimen informa                                                                                                                                                    | ation                                                                                                                                                     |                                                                                                          |                                                                                                  |                                                                                       |                                                                            |                                                                                                      |                                                                                                  |                                                                                  |
| E<br>Thickness<br>Initial mass<br>Surface area<br>Heat flux<br>Separation<br>Orientation                                                                            | 13.1 MJ/kg<br>12 mm<br>125.9 g<br>88.4 cm <sup>2</sup><br>50 kW/m <sup>2</sup><br>25 mm<br>Horizontal                                                     | Specimen r<br>Nominal du<br>Edge frame<br>Grid used?<br>Manufactur<br>Sponsor                            | number<br>ict flow rate<br>e used?<br>er                                                         | 2<br>24 l/s<br>Yes<br>No                                                              |                                                                            | Conditioned?<br>Temperature<br>RH                                                                    | ? Yes<br>23°C<br>50%                                                                             |                                                                                  |
| Test                                                                                                                                                                |                                                                                                                                                           | Pre-test c                                                                                               | onditions                                                                                        |                                                                                       |                                                                            | Test times                                                                                           |                                                                                                  |                                                                                  |
| Standard used<br>Date of test<br>Time of test<br>Date of report                                                                                                     | ULC S135<br>29/11/2016<br>08:05<br>29/11/2016                                                                                                             | Ambient te<br>Ambient pr<br>Relative hu                                                                  | mperature<br>essure<br>midity                                                                    | 18.6°0<br>96.811<br>35%                                                               | C<br>L kPa                                                                 | Time to ignit<br>Time to flam<br>End of test o<br>End of test t<br>(for calculati                    | tion 0 s<br>leout s<br>triterion Use<br>ime 900<br>ons)                                          | r entered<br>s                                                                   |
| Apparatus specifi                                                                                                                                                   | cations                                                                                                                                                   | Initial cor                                                                                              | nditions                                                                                         |                                                                                       | -                                                                          |                                                                                                      |                                                                                                  |                                                                                  |
| C-factor<br>Duct diameter<br>O2 delay time<br>CO2 delay time<br>CO delay time<br>OD corr. factor                                                                    | 0.04298<br>0.114 m<br>17 s<br>17 s<br>17 s<br>1.0055                                                                                                      | Baseline an<br>Baseline ox<br>Baseline ca<br>Mass at sus                                                 | nbient oxyge<br>ygen<br>rbon dioxide<br>stained flam                                             | en 20.786<br>20.948<br>e 0.0787<br>ing 125.9                                          | 5%<br>3%<br>7%<br>g                                                        | Heat Relea<br>THR (0-300)<br>THR (0-600)<br>THR (0-1200<br>Fuel load                                 | se Results<br>0.56 M<br>0.92 M<br>0) -<br>0.08 M                                                 | J/m²<br>J/m²<br>J/kg                                                             |
| Test results (betv                                                                                                                                                  | veen 0 and 900 s                                                                                                                                          | 5)                                                                                                       |                                                                                                  |                                                                                       |                                                                            |                                                                                                      |                                                                                                  |                                                                                  |
| Total heat release<br>Total oxygen consur<br>Mass lost<br>Average specific ML<br>Total smoke release<br>Total smoke produc<br>MAHRE                                 | 1.1 MJ/m <sup>2</sup><br>med 1.2 g<br>31.3 g<br>R 4.30 g/(s <sup>-</sup> rr<br>81.2 m <sup>2</sup> /m<br>tion 0.7 m <sup>2</sup><br>2.0 kW/m <sup>2</sup> | n <sup>2</sup> ) Si<br><sup>2</sup> C                                                                    | eat release (<br>ffective heat<br>lass loss rate<br>pecific extine<br>arbon mono<br>arbon dioxid | rate (kW/m<br>of comb. (<br>e (g/s)<br>ction area (i<br>xide yield (l<br>e yield (kg/ | <sup>2</sup> ) C<br>MJ/kg) C<br>m <sup>2</sup> /kg) 2<br>kg/kg) C<br>kg) C | Mean   Pe     0.70   6.5     0.18   66     0.035   0.2     21.40   43     0.0085   7.3     0.12   87 | ak   at ti     59   126     .34   330     285   625     36.10   523     3949   783     .35   135 | me (s)                                                                           |
| Test averages                                                                                                                                                       |                                                                                                                                                           |                                                                                                          |                                                                                                  |                                                                                       |                                                                            |                                                                                                      |                                                                                                  |                                                                                  |
| from ignition to ig<br>Heat release rate (k<br>Effective heat of con<br>Mass loss rate (g/s)<br>Specific extinction a<br>Carbon monoxide yi<br>Carbon dioxide yield | gnition plus   1     W/m²)   0.     nb. (MJ/kg)   0.     rea (m²/kg)   16     eld (kg/kg)   0.     l (kg/kg)   0.                                         | min   2 min     02   0.64     00   0.17     034   0.032     5.12   22.98     0002   0.0020     06   0.08 | <b>3 min</b><br>1.20<br>0.29<br>0.037<br>19.28<br>0.0033<br>0.09                                 | <b>4 min</b><br>1.68<br>0.37<br>0.040<br>17.63<br>0.0036<br>0.10                      | <b>5 min</b><br>1.64<br>0.34<br>0.042<br>16.20<br>0.0039<br>0.10           | 6 min<br>1.76<br>0.37<br>0.042<br>16.03<br>0.0045<br>0.10                                            | <b>0</b> s -<br><b>946</b> s<br>0.65<br>0.17<br>0.034<br>22.42<br>0.0091<br>0.12                 | <b>0</b> s -<br><b>946</b> s<br>0.65<br>0.17<br>0.034<br>22.42<br>0.0091<br>0.12 |
| Smoke results<br>Total smoke release<br>Total smoke release<br>Total smoke release                                                                                  | :: non-flaming pha<br>:: flaming phase (0<br>:: whole test (0 s -                                                                                         | se (0 s - 0 s)<br>s - 900 s)<br>900 s)                                                                   | 0.0 m²/m<br>81.2 m²/n<br>81.2 m²/n                                                               | 2<br>n <sup>2</sup><br>n <sup>2</sup>                                                 |                                                                            |                                                                                                      |                                                                                                  |                                                                                  |



| Sample description<br>Material name/ID                                                                                                                           | 102816<br>102816                                                                                             | 5357MID-0<br>5357MID-0                                                             | 01 Terasun<br>01 Terasun                                                         | Mg Board<br>Mg Board                                                                    |                                                                                  |                                                                                                                                |                                                                                            |                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Specimen informat<br>E<br>Thickness<br>Initial mass<br>Surface area<br>Heat flux<br>Separation<br>Orientation                                                    | tion<br>13.1 MJ/k<br>12 mm<br>125.1 g<br>88.4 cm <sup>2</sup><br>50 kW/m <sup>2</sup><br>25 mm<br>Horizontal | g S<br>N<br>E<br>S                                                                 | pecimen nu<br>lominal duct<br>dge frame u<br>irid used?<br>lanufacture<br>ponsor | mber<br>: flow rate<br>used?                                                            | 3<br>24 l/s<br>Yes<br>No                                                         |                                                                                                                                | Conditioned<br>Temperatur<br>RH                                                            | d? Yes<br>re 23°C<br>50%                                                                                         |
| Test<br>Standard used<br>Date of test<br>Time of test<br>Date of report                                                                                          | ULC S135<br>29/11/201<br>08:28<br>29/11/201                                                                  | .6 A<br>.6 R                                                                       | <b>Pre-test co</b><br>Imbient tem<br>Imbient pres<br>Ielative hum                | nditions<br>perature<br>ssure<br>idity                                                  | 18.8°C<br>96.82<br>36%                                                           | C<br>1 kPa                                                                                                                     | <b>Test times</b><br>Time to ign<br>Time to flan<br>End of test<br>End of test             | s<br>iition not recorded<br>meout s<br>criterion User entered<br>time 900 s<br>tione                             |
| Apparatus specifica<br>C-factor<br>Duct diameter<br>O2 delay time<br>C02 delay time<br>C0 delay time<br>OD corr. factor                                          | ations<br>0.04298<br>0.114 m<br>17 s<br>17 s<br>17 s<br>1.0055                                               | I<br>B<br>B<br>B<br>N                                                              | nitial cond<br>aseline amb<br>aseline oxyo<br>aseline carb<br>1ass at susta      | itions<br>vient oxyge<br>gen<br>von dioxide<br>ained flami                              | n 20.78:<br>20.95;<br>0.074:<br>ng no ign                                        | Heat Release Results     THR (0-300)   0.44 MJ/m²     THR (0-600)   1.24 MJ/m²     THR (0-1200)   -     Fuel load   0.16 MJ/kg |                                                                                            |                                                                                                                  |
| Test results (betwo<br>Total heat release<br>Total oxygen consum<br>Mass lost<br>Average specific MLR<br>Total smoke release<br>Total smoke producti<br>MAHRE    | een 0 and 9<br>2.2 MJ,<br>2.0 g<br>32.2 g<br>4.46 g,<br>24.4 m<br>on 0.2 m <sup>2</sup><br>3.5 kW            | 00 s)<br>/m <sup>2</sup><br>/(s·m <sup>2</sup> )<br>/ <sup>2</sup> /m <sup>2</sup> | Hea<br>Effe<br>Ma:<br>Spe<br>Car<br>Car                                          | at release r<br>ective heat<br>ss loss rate<br>ecific extino<br>bon mono:<br>bon dioxid | ate (kW/m<br>of comb. (<br>(g/s)<br>tion area (<br>kide yield (l<br>e yield (kg/ | <sup>2</sup> )<br>MJ/kg)<br>m²/kg)<br>kg/kg)<br>′kg)                                                                           | Mean   P     2.36   7     0.58   7     0.036   0     -3.28   2     0.0076   1     0.12   1 | Peak   at time (s)     .54   856     8.32   660     .360   626     086.32   209     4.9949   786     58.40   786 |
| Test averages<br>between time 0 an<br>Heat release rate (kW<br>Effective heat of com<br>Mass loss rate (g/s)<br>Specific extinction are<br>Carbon monoxide yield | <b>d 1 min</b><br>V/m <sup>2</sup> )<br>b. (MJ/kg)<br>ea (m <sup>2</sup> /kg)<br>ld (kg/kg)<br>(ka/kg)       | <b>2 min</b><br>0.68<br>0.26<br>0.023<br>-4.33<br>0.0009<br>0 10                   | <b>3 min</b><br>0.81<br>0.22<br>0.033<br>-2.36<br>0.0015<br>0.08                 | <b>4 min</b><br>0.89<br>0.22<br>0.036<br>-3.41<br>0.0026<br>0.08                        | <b>5 min</b><br>0.96<br>0.21<br>0.041<br>-4.40<br>0.0029<br>0.08                 | <b>6 min</b><br>1.18<br>0.24<br>0.043<br>-4.72<br>0.0032<br>0.08                                                               | 1.31<br>0.27<br>0.044<br>-4.29<br>2 0.0034<br>0.08                                         | 0 s - 0 s -<br>908 s 908 s<br>2.39 2.39<br>0.60 0.60<br>0.035 0.035<br>-3.33 -3.33<br>0.0078 0.0078<br>0.12 0.12 |

#### Smoke results

Total smoke release: whole test (0 s - 900 s)

24.4 m<sup>2</sup>/m<sup>2</sup>



| Sample description | 102816357MID-001 Terasun Mg Board |
|--------------------|-----------------------------------|
| Material name/ID   | 102816357MID-001 Terasun Mg Board |

| Specimen information                                                                                                                                                           | on                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                                |                                                                                                                    |                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| E<br>Thickness<br>Initial mass<br>Surface area<br>Heat flux<br>Separation<br>Orientation                                                                                       | 13.1 MJ/kg<br>12 mm<br>124.7 g<br>88.4 cm <sup>2</sup><br>50 kW/m <sup>2</sup><br>25 mm<br>Horizontal                                                            | Specimen number<br>Nominal duct flow rat<br>Edge frame used?<br>Grid used?<br>Manufacturer<br>Sponsor                                              | 4<br>e 24 l/s<br>Yes<br>No                                                                                                                     | Conditioned?<br>Temperature<br>RH                                                                                  | Yes<br>23°C<br>50%                                                                                                                    |
|                                                                                                                                                                                |                                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                | · · · ·                                                                                                            |                                                                                                                                       |
| Standard used<br>Date of test<br>Time of test<br>Date of report                                                                                                                | ULC S135<br>29/11/2016<br>10:24<br>29/11/2016                                                                                                                    | Pre-test conditions<br>Ambient temperature<br>Ambient pressure<br>Relative humidity                                                                | 21.3°C<br>97.15 kPa<br>32%                                                                                                                     | Time to ignition<br>Time to flamed<br>End of test crit<br>End of test tim<br>(for calculation                      | n not recorded<br>out s<br>erion User entered<br>e 900 s<br>is)                                                                       |
| Apparatus specificat<br>C-factor<br>Duct diameter<br>O2 delay time<br>CO2 delay time<br>CO delay time<br>OD corr. factor                                                       | tions<br>0.04298<br>0.114 m<br>17 s<br>17 s<br>17 s<br>1.0055                                                                                                    | Initial conditions<br>Baseline ambient oxy<br>Baseline oxygen<br>Baseline carbon dioxid<br>Mass at sustained flar                                  | gen 20.771%<br>20.946%<br>de 0.0756%<br>ning no ignition                                                                                       | Heat Release<br>THR (0-300)<br>THR (0-600)<br>THR (0-1200)<br>Fuel load                                            | e <b>Results</b><br>0.12 MJ/m <sup>2</sup><br>0.43 MJ/m <sup>2</sup><br>-<br>0.07 MJ/kg                                               |
| Test results (betwee                                                                                                                                                           | en 0 and 900 s)                                                                                                                                                  | I                                                                                                                                                  |                                                                                                                                                | M                                                                                                                  |                                                                                                                                       |
| Total heat release<br>Total oxygen consumer<br>Mass lost<br>Average specific MLR<br>Total smoke release<br>Total smoke production<br>MAHRE                                     | 1.0 MJ/m <sup>2</sup><br>d 1.1 g<br>32.0 g<br>4.33 g/(s·m <sup>2</sup> )<br>29.3 m <sup>2</sup> /m <sup>2</sup><br>n 0.3 m <sup>2</sup><br>1.1 kW/m <sup>2</sup> | Heat release<br>Effective hea<br>Mass loss ra<br>Specific exti<br>Carbon mon<br>Carbon diox                                                        | e rate (kW/m <sup>2</sup> )<br>at of comb. (MJ/kg)<br>te (g/s)<br>nction area (m <sup>2</sup> /kg)<br>oxide yield (kg/kg)<br>ide yield (kg/kg) | Mean   Pean     0.48   5.50     0.12   75.33     0.036   0.410     0.15   4527     0.0063   20.10     0.12   372.4 | at time (s)     717     3   566     6   207     /.03   787     034   459     46   459                                                 |
| Test averages                                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                    |                                                                                                                                                |                                                                                                                    | 0                                                                                                                                     |
| between time 0 and<br>Heat release rate (kW/<br>Effective heat of comb<br>Mass loss rate (g/s)<br>Specific extinction area<br>Carbon monoxide yield<br>Carbon dioxide yield (k | 1 min   2 m     m <sup>2</sup> )   -1.2:     (MJ/kg)   -0.3:     0.03   0.03     (m <sup>2</sup> /kg)   -4.8:     (kg/kg)   0.00     g/kg)   0.08                | in   3 min   4 min     3   -1.31   -1.01     3   -0.31   -0.23     2   0.037   0.038     3   -1.28   1.04     08   0.0011   0.0023     0.08   0.09 | 5 min   6 mir     -0.86   -0.82     -0.18   -0.16     0.043   0.044     0.19   -0.34     0.0025   0.002     0.09   0.09                        | -0.81<br>-0.16<br>0.044<br>-0.40<br>8 0.0031<br>0.09                                                               | 903 s   903 s     903 s   903 s     0.48   0.48     0.12   0.12     0.035   0.035     0.14   0.14     0.0063   0.0063     0.12   0.12 |
| Smoke results<br>Total smoke release: w                                                                                                                                        | /hole test (0 s - 90                                                                                                                                             | 00 s) 29.3 m <sup>2</sup> /                                                                                                                        | /m²                                                                                                                                            |                                                                                                                    |                                                                                                                                       |



102816357MID-001 Terasun Mg Board

Sample description

| November    | 30, 2016 |
|-------------|----------|
| Page 9 of 1 | 6        |

| Material name/ID 102816357MID-001 Terasun Mg Board                                                                                                                             |                                                                                                       |                                                                    |                                                                            |                                                                                                      |                                                                                      |                                                            |                                                                                                                                                                       |                                                                    |                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|
| Specimen informati                                                                                                                                                             | on                                                                                                    |                                                                    |                                                                            |                                                                                                      |                                                                                      |                                                            |                                                                                                                                                                       |                                                                    |                                                                 |
| E<br>Thickness<br>Initial mass<br>Surface area<br>Heat flux<br>Separation<br>Orientation                                                                                       | 13.1 MJ/kg<br>12 mm<br>126.6 g<br>88.4 cm <sup>2</sup><br>50 kW/m <sup>2</sup><br>25 mm<br>Horizontal | g Sp<br>No<br>Ec<br>Gr<br>Ma<br>Sp                                 | becimen nu<br>ominal duc<br>Ige frame<br>rid used?<br>anufacture<br>bonsor | ımber<br>t flow rate<br>used?<br>r                                                                   | 5<br>24 I/s<br>Yes<br>No                                                             |                                                            | Conditioned<br>Temperature<br>RH                                                                                                                                      | ? Yes<br>23°C<br>50%                                               |                                                                 |
| TestStandard usedULC S135Date of test29/11/2016Time of test09:13Date of report29/11/2016                                                                                       |                                                                                                       |                                                                    | r <b>e-test co</b><br>nbient ten<br>nbient pre<br>elative hun              | nditions<br>operature<br>ssure<br>hidity                                                             | 19.3°C<br>96.90<br>35%                                                               | C<br>L kPa                                                 | Test times   Time to ignition not recorded   Time to flameout s   End of test criterion User entered   End of test time 900 s   (for calculations) (for calculations) |                                                                    |                                                                 |
| Apparatus specifica<br>C-factor<br>Duct diameter<br>O2 delay time<br>CO2 delay time<br>CO delay time<br>OD corr. factor                                                        | tions<br>0.04298<br>0.114 m<br>17 s<br>17 s<br>17 s<br>1.0055                                         | <b>In</b><br>Ba<br>Ba<br>Ma                                        | nitial cond<br>aseline aml<br>aseline oxy<br>aseline carl<br>ass at sust   | ditions<br>bient oxygen 20.779%<br>ygen 20.949%<br>bon dioxide 0.0735%<br>tained flaming no ignition |                                                                                      |                                                            | Heat Relea<br>THR (0-300)<br>THR (0-600)<br>THR (0-1200<br>Fuel load                                                                                                  | se Results<br>0.22 M<br>0.53 M<br>0) -<br>0.10 M                   | J/m²<br>J/m²<br>J/kg                                            |
| Test results (betwe                                                                                                                                                            | en 0 and 90                                                                                           | 00 s)                                                              |                                                                            |                                                                                                      |                                                                                      |                                                            | Mean Pe                                                                                                                                                               | eak att                                                            | ime (s)                                                         |
| Total heat release1.4 MJ/m²Total oxygen consumed1.5 gMass lost32.6 gAverage specific MLR4.47 g/(s·m²)Total smoke release31.5 m²/m²Total smoke production0.3 m²MAHRE1.6 kW/m²   |                                                                                                       | 'm²<br>(s·m²)<br>²/m²<br>/m²                                       | Hea<br>Effi<br>Ma<br>Spe<br>Car<br>Car                                     | at release r<br>ective heat<br>ss loss rate<br>ecific extinc<br>rbon mono»<br>rbon dioxide           | ate (kW/m<br>of comb. (<br>e (g/s)<br>ttion area (i<br>kide yield (l<br>e yield (kg/ | ²)<br>MJ/kg)<br>m²/kg)<br>kg/kg)<br>'kg)                   | 1.18 7.0   0.29 53   0.036 0.1   0.58 32   0.0082 19   0.12 20                                                                                                        | 56 749<br>.42 877<br>230 895<br>69.41 601<br>.9390 799<br>8.65 799 |                                                                 |
| Test averages                                                                                                                                                                  |                                                                                                       |                                                                    |                                                                            |                                                                                                      |                                                                                      |                                                            |                                                                                                                                                                       | •                                                                  | •                                                               |
| between time 0 and<br>Heat release rate (kW/<br>Effective heat of comb<br>Mass loss rate (g/s)<br>Specific extinction area<br>Carbon monoxide yield<br>Carbon dioxide yield (k | <b>I 1 min</b><br>/m²)<br>(MJ/kg)<br>a (m²/kg)<br>d (kg/kg)<br>«g/kg)                                 | <b>2 min</b><br>-0.49<br>-0.16<br>0.028<br>-2.20<br>0.0017<br>0.08 | <b>3 min</b><br>-0.59<br>-0.16<br>0.034<br>0.00<br>0.0019<br>0.07          | <b>4 min</b><br>-0.31<br>-0.08<br>0.037<br>0.59<br>0.0032<br>0.07                                    | <b>5 min</b><br>-0.12<br>-0.03<br>0.041<br>-0.91<br>0.0036<br>0.08                   | 6 min<br>-0.02<br>-0.00<br>0.043<br>0.19<br>0.0038<br>0.08 | 0.01<br>0.00<br>0.044<br>-0.07<br>0.0040<br>0.08                                                                                                                      | <b>903 s</b><br>1.19<br>0.29<br>0.036<br>0.65<br>0.0083<br>0.12    | <b>903 s</b><br>1.19<br>0.29<br>0.036<br>0.65<br>0.0083<br>0.12 |
| <b>Smoke results</b><br>Total smoke release: v                                                                                                                                 | vhole test (0                                                                                         | s - 900 s)                                                         |                                                                            | 31.5 m²/m                                                                                            | 1 <sup>2</sup>                                                                       |                                                            |                                                                                                                                                                       |                                                                    |                                                                 |



102816357MID-001 Terasun Mg Board

Sample description

| Material name/ID 102816357MID-001 Terasun Mg Board                                                                                                          |                                                                                                            |                                                                     |                                                                                                          |                                                                                     |                                                                    |                                                                                                   |                                                                                                                                                      |                                                                  |                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------|
| Specimen informa                                                                                                                                            | ition                                                                                                      |                                                                     |                                                                                                          |                                                                                     |                                                                    |                                                                                                   |                                                                                                                                                      |                                                                  |                                                           |
| E<br>Thickness<br>Initial mass<br>Surface area<br>Heat flux<br>Separation<br>Orientation                                                                    | 13.1 MJ/kg<br>12 mm<br>123.5 g<br>88.4 cm <sup>2</sup><br>50 kW/m <sup>2</sup><br>25 mm<br>Horizontal      | g Sp<br>No<br>Ec<br>Gr<br>Ma<br>Sp                                  | becimen nu<br>ominal duc<br>Ige frame<br>rid used?<br>anufacture<br>bonsor                               | umber<br>it flow rate<br>used?<br>er                                                | 6<br>24 I/s<br>Yes<br>No                                           |                                                                                                   | Conditioned<br>Temperature<br>RH                                                                                                                     | ? Yes<br>23°C<br>50%                                             |                                                           |
| Test<br>Standard used<br>Date of test<br>Time of test<br>Date of report                                                                                     | ULC S135<br>29/11/201<br>09:32<br>29/11/201                                                                | 6 Ar<br>6 Ar<br>6                                                   | Pre-test conditions<br>Ambient temperature 20.9°C<br>Ambient pressure 96.976 kP<br>Relative humidity 34% |                                                                                     |                                                                    |                                                                                                   | Test times   Time to ignition not recorded   Time to flameout s   End of test criterion User entered   End of test time 900 s   (for calculations) S |                                                                  |                                                           |
| Apparatus specifie<br>C-factor<br>Duct diameter<br>O2 delay time<br>CO2 delay time<br>CO delay time<br>OD corr. factor                                      | cations<br>0.04298<br>0.114 m<br>17 s<br>17 s<br>17 s<br>1.0055                                            | In<br>Ba<br>Ba<br>Ma                                                | aitial cond<br>aseline am<br>aseline oxy<br>aseline car<br>ass at sust                                   | <b>litions</b><br>bient oxyge<br>gen<br>bon dioxide<br>ained flami                  | en 20.767<br>20.949<br>0.0742<br>ng no ign                         | 7%<br>9%<br>L%<br>ition                                                                           | Heat Relea<br>THR (0-300)<br>THR (0-600)<br>THR (0-1200<br>Fuel load                                                                                 | se Results<br>0 0.18 M<br>0 0.61 M<br>0) -<br>0.08 M             | 1]/m²<br>1]/m²<br>1]/kg                                   |
| Test results (betw<br>Total heat release<br>Total oxygen consur<br>Mass lost<br>Average specific MLI<br>Total smoke release<br>Total smoke product<br>MAHRE | 00 s)<br>'m²<br>(s·m²)<br>²/m²<br>/m²                                                                      | He<br>Eff<br>Ma<br>Sp<br>Ca<br>Ca                                   | at release r<br>ective heat<br>ss loss rate<br>ecific extinc<br>rbon mono<br>rbon dioxid                 | rate (kW/m<br>of comb. (<br>(g/s)<br>ttion area (i<br>kide yield (k<br>e yield (kg/ | ²)<br>MJ/kg)<br>m²/kg)<br>‹g/kg)<br>kg)                            | Mean   Pe     0.87   6.     0.21   64     0.036   0.     -8.64   33     0.0064   3.     0.13   59 | <b>eak at t</b><br>39 891<br>4.08 322<br>279 233<br>115.56 321<br>5049 539<br>9.50 539                                                               | time (s)                                                         |                                                           |
| Test averages                                                                                                                                               |                                                                                                            |                                                                     |                                                                                                          |                                                                                     |                                                                    |                                                                                                   |                                                                                                                                                      | •                                                                | 0                                                         |
| between time 0 at<br>Heat release rate (k'<br>Effective heat of cor<br>Mass loss rate (g/s)<br>Specific extinction at<br>Carbon monoxide yield              | <b>nd 1 min</b><br>W/m <sup>2</sup> )<br>nb. (MJ/kg)<br>rea (m <sup>2</sup> /kg)<br>eld (kg/kg)<br>(kg/kg) | <b>2 min</b><br>-0.58<br>-0.16<br>0.031<br>-14.27<br>0.0004<br>0.09 | <b>3 min</b><br>-0.63<br>-0.16<br>0.035<br>-12.30<br>0.0010<br>0.09                                      | <b>4 min</b><br>-0.78<br>-0.17<br>0.039<br>-10.44<br>0.0021<br>0.09                 | <b>5 min</b><br>-0.61<br>-0.12<br>0.044<br>-8.87<br>0.0023<br>0.09 | <b>6 min</b><br>-0.37<br>-0.07<br>0.045<br>-7.80<br>0.0026<br>0.10                                | -0.02<br>-0.00<br>0.045<br>-8.24<br>0.0029<br>0.10                                                                                                   | <b>903 s</b><br>0.88<br>0.22<br>0.036<br>-8.64<br>0.0065<br>0.13 | 903 s<br>0.88<br>0.22<br>0.036<br>-8.64<br>0.0065<br>0.13 |
| Smoke results<br>Total smoke release                                                                                                                        | : whole test ((                                                                                            | s - 900 s)                                                          |                                                                                                          | 17.1 m²/m                                                                           | 1 <sup>2</sup>                                                     |                                                                                                   |                                                                                                                                                      |                                                                  |                                                           |



| Heat f<br>Orient           | lux<br>ation                                 | 50<br>Ho                                     | kW/m²<br>rizontal                                    |                                               |                                  | Surface<br>Retainer                                          | area<br>frame use                                | 88.4<br>d? Yes                                  | 4 cm <sup>2</sup>                               |                                                 |
|----------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------------|-----------------------------------------------|----------------------------------|--------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| Test a                     | averages                                     |                                              |                                                      |                                               |                                  |                                                              |                                                  |                                                 |                                                 |                                                 |
| Test                       | t(ig) t<br>(s)                               | (fo)<br>(s)                                  | t(end)<br>(s)                                        | HRR(pea<br>(kW/m²)                            | <)                               | tpeak<br>(s)                                                 | THR<br>(MJ/m²)                                   | HRR(60)<br>(kW/m²)                              | ) HRR(180)<br>) (kW/m²)                         | HRR(300)<br>(kW/m²)                             |
| Mean                       | 0 (                                          | )                                            | 900                                                  | 7.81                                          |                                  | 677.5                                                        | 2.00                                             | -0.14                                           | 0.27                                            | 0.73                                            |
| 1<br>2<br>3<br>4<br>5<br>6 | 0<br>0<br>0<br>0<br>0<br>0                   |                                              | 900<br>900<br>900<br>900<br>900<br>900<br>900        | 13.15<br>6.59<br>7.60<br>5.50<br>7.66<br>6.39 |                                  | 725<br>126<br>857<br>717<br>749<br>891                       | 4.96<br>1.12<br>2.26<br>1.01<br>1.44<br>1.18     | 0.70<br>0.02<br>0.72<br>-1.23<br>-0.49<br>-0.58 | 1.58<br>1.20<br>0.95<br>-1.01<br>-0.31<br>-0.78 | 2.73<br>1.64<br>1.24<br>-0.82<br>-0.02<br>-0.37 |
| Test                       | Flux<br>(kW/m²)                              | t<br>(mm)                                    | Area<br>(cm²                                         | m(i<br>) (g)                                  | )                                | m(s)<br>(g)                                                  | m(f)<br>(g)                                      | ∆m<br>(g)                                       | Ave MLR<br>(g/s·m²)                             | EHC(av)<br>(MJ/kg)                              |
| Mean                       |                                              | 12                                           |                                                      | 12                                            | 5.2                              | 125.2                                                        | 93.3                                             | 32.0                                            | 4.4                                             | 0.46                                            |
| 1<br>2<br>3<br>4<br>5<br>6 | 50<br>50<br>50<br>50<br>50<br>50             | 12<br>12<br>12<br>12<br>12<br>12<br>12       | 88.4<br>88.4<br>88.4<br>88.4<br>88.4<br>88.4<br>88.4 | 125<br>125<br>125<br>124<br>126<br>123        | .6<br>.9<br>.1<br>.7<br>.6<br>.5 | 125.6<br>125.9<br>125.1<br>124.7<br>126.6<br>123.5           | 94.1<br>94.6<br>93.0<br>92.7<br>94.0<br>91.1     | 31.5<br>31.3<br>32.1<br>32.0<br>32.6<br>32.4    | 4.3<br>4.3<br>4.5<br>4.3<br>4.5<br>4.4          | 1.38<br>0.18<br>0.60<br>0.12<br>0.29<br>0.21    |
| Test                       | THR(0-300)<br>(MJ/m²)                        | THR(0<br>(MJ/m                               | -600) TH<br>²) (M                                    | R(0-1200)<br>J/m²)                            | SP<br>(m                         | R(av) (                                                      | SEA(av)<br>(m²/kg)                               | Fuel load<br>(MJ/kg)                            | MARHE<br>(kW/m²)                                |                                                 |
| Mean                       | 0.40                                         | 1.02                                         | -                                                    |                                               | 0.                               | 0002 4                                                       | 4.80                                             | 0.14                                            | 2.40                                            |                                                 |
| 1<br>2<br>3<br>4<br>5<br>6 | 0.88<br>0.56<br>0.45<br>0.12<br>0.22<br>0.18 | 2.40<br>0.92<br>1.26<br>0.43<br>0.53<br>0.61 |                                                      |                                               | 0.0<br>0.0<br>-0.<br>0.0<br>0.0  | 0007<br>0007<br>0001<br>0000<br>0000<br>0000<br>0000<br>0003 | 18.58<br>21.40<br>-3.28<br>0.15<br>0.58<br>-8.64 | 0.35<br>0.08<br>0.16<br>0.07<br>0.10<br>0.08    | 5.51<br>1.98<br>2.84<br>1.12<br>1.60<br>1.36    |                                                 |
| Test                       | Date                                         | Specim                                       | en # Line                                            | e colour F                                    | ilena                            | me                                                           |                                                  |                                                 |                                                 |                                                 |
| 1<br>Board                 | 29/11/2016<br>1.csv                          | 1                                            |                                                      |                                               |                                  | 5\Data\Int                                                   | tertek Shar                                      | nghai\10281                                     | 6357\102816357                                  | MID-001 Terasun Mg                              |
| ∠<br>Board<br>3            | 2.csv<br>29/11/2016                          | ∠<br>3                                       |                                                      |                                               | :                                |                                                              | tertek Shar                                      | nghai\10281                                     | 6357\102816357                                  | MID-001 Terasun Mg                              |
| Board<br>4                 | 3.csv<br>29/11/2016                          | 4                                            |                                                      | (                                             | ::\CC!                           | 5\Data\Ini                                                   | tertek Shar                                      | nghai\10281                                     | 6357\102816357                                  | MID-001 Terasun Mg                              |
| Board<br>5                 | 4.csv<br>29/11/2016                          | 5                                            |                                                      | C                                             | :\CC!                            | 5\Data\In                                                    | tertek Shar                                      | nghai\10281                                     | 6357\102816357                                  | MID-001 Terasun Mg                              |
| The test<br>assessin       | g the potential fire<br>0.CSV                | e behaviour<br>hazard of th                  | of the test sp<br>ne product in                      | ecimens of a<br>use.                          | product                          | t under the r                                                | certicular conc                                  | litions of the te                               | st; they are not intend                         | ded to be the sole criterion for                |

**Observations for all of the samples:** 

All specimens visibly darkened bu did not ignite.



Graphs

Zhejiang Terasun Air Duct Co., Ltd. Report No. 102816357MID-001 November 30, 2016 Page 12 of 16



The test results relate to the behaviour of the test specimens of a product under the particular conditions of the test; they are not intended to be the sole criterion for assessing the potential fire hazard of the product in use.



November 30, 2016 Page 13 of 16



The test results relate to the behaviour of the test specimens of a product under the particular conditions of the test; they are not intended to be the sole criterion for assessing the potential fire hazard of the product in use.



November 30, 2016 Page 14 of 16



The test results relate to the behaviour of the test specimens of a product under the particular conditions of the test; they are not intended to be the sole criterion for assessing the potential fire hazard of the product in use.



November 30, 2016 Page 15 of 16



#### Summary of Total Smoke Production

| · / ·      |                           |
|------------|---------------------------|
|            | Total Smoke<br>Production |
| Specimen # | m <sup>2</sup>            |
| 1          | 0.7                       |
| 2          | 0.7                       |
| 3          | 0.2                       |
| 4          | 0.3                       |
| 5          | 0.3                       |
| 6          | 0.2                       |
| Average    | 0.4                       |
|            |                           |



November 30, 2016 Page 16 of 16

## 6 Conclusion

Intertek has conducted testing for Zhejiang Terasun Air Duct Co., Ltd., onTerasun Magnesium Board to evaluate heat and smoke release rates. Testing was conducted following the standard methods of ULC S135-04 Standard Test Method for the Determination of Combustibility Parameters of Building Materials Using an Oxygen Consumption Calorimeter (Cone Calorimeter) in accordance with the National Building Code of Canada for materials used in buildings that are required to be of noncombustible.

There are no pass/fail criteria for ULC S135-04.

With reference to the National Building Code of Canada, the material had an average total heat release of  $2.00 \text{ MJ/m}^2$  (3 MJ/m<sup>2</sup> maximum allowable) and average total smoke extinction area of  $0.4 \text{ m}^2$  ( $1.0 \text{ m}^2$  maximum allowable). It therefore **passed** the National Building Code of Canada for materials used in buildings that are required to be noncombustible.

The conclusions of this test report may be used as part of the requirements for Intertek product certification. Authority to Mark must be issued for a product to become certified.

#### INTERTEK

Automitune

Reported by:

Tolu Bamikunle Lab Technician III, Verification Center

Super Bouman

Reviewed by:

Bryan Bowman Chemist, Verification Center

# **REVISION SUMMARY**

| DATE              | SUMMARY                 |
|-------------------|-------------------------|
| November 30, 2016 | Original date of report |
|                   |                         |